
Phase advancing for DC electric motors 
 

Although this is not an ambitious text, I wanted to investigate a DC motor in a more detailed 

way than it can be found in a typical internet-sourced overview article. After I learned that an 

idealized AC synchronous motor does not have a theoretical upper speed limit, I was 

motivated to investigate if the same can be true for a DC motor. 

 

A DC motor and an AC synchronous motor are, I could argue, quite similar. The left picture 

below shows a simplified brushed DC motor, while the right picture shows a simplified 

synchronous AC motor. Can you tell the difference? 

 

 
 

The difference is that the DC motor has commutator (the motor above has 3 commutator 

plates), while the AC motor has slip rings (the motor above has 3 slip rings). You must feed 

alternate voltage to an AC motor, while a DC motor uses its commutator to ‘alternatize’ the 

supplied DC voltage. In both cases, however, the motor winding ‘feels’ the AC voltage and 

carries AC current. 

 

In practice you will not see AC motors built the way as depicted above. The AC motor will be 

made ‘inverted’ way, having windings on stator and the permanent magnet on rotor – this 

makes slip rings unneeded. The inversion does not, however, change the physics involved… 

Brushless DC motors (BLDC) are also made in this inverted way. If one examines a BLDC 

motor it can be seen that the mechanical part of the BLDC motor is pretty much identical to 

an AC synchronous motor. 

 

What is the real difference? The difference is in philosophy on how the voltage is supplied to 

motor winding. In the case of a DC motor, the phase of the voltage supplied to motor winding 

depends on the rotor angular position. In the case of an AC motor, the rotor angular position 

depends on the phase of the supplied voltage. 

 

In the case of a brushed DC motor, it is the commutator that is responsible to convert the 

voltage supplied by ‘DC bus’ into the AC voltage and feed it to motor windings. In the case of 

brushless DC motor, instead of the commutator there is an inverter circuit that converts a 

voltage from DC bus into AC and feeds it to the windings. In both cases the phase of the 

voltage that is feed to the motor winding follows (is function of) the rotor angular position.  

 



That said, it is obvious that you cannot have that much control over a DC motor speed and 

angular position as you can have it in the AC synchronous motor case. On the other hand, to 

control AC synchronous motor speed you have to be able to generate AC voltage of 

adjustable frequency, and this is not easy. To change speed of a DC motor you just need to 

change the supplied average DC voltage and this is considerably easier. 

 

A simple DC motor model 

 

I am going to make a DC motor model simple enough that even I can use math against it. My 

motor therefore consists of rectangular wire winding rotating inside a homogenous magnetic 

field in vacuum (this reminds me on the ‘spherical cows’ joke). 

 

 
 

The wire winding has N turns, length l, width d, resistance R and inductance L. The magnetic 

field flux density is B0. The AC voltage uL is supplied to the loop – here it is not important 

how the AC voltage is obtained (by a commutator or by some electronics). It is only important 

that the supplied voltage uL phase directly depends on the angular position of the loop (rotor). 

The angular position is α and the rotation speed is ω (rad/s). 
 

Very dissimilar to a real motor, our motor winding voltage uL is going to be a pure sine 

voltage of the amplitude u0! The reason is because it makes the math easier for me. As said, 

the uL phase follows the winding (rotor) angular position, but there can be, in a general case, 

some phase difference φu between the two. Therefore: 
 

 
 

Further, I am not going to allow my rotor to rotate freely. Instead I will rotate it externally 

with some rotation speed ω. I am interested to see what torque does motor produce at certain 

rotation speed ω and input voltage amplitude u0 and phase φu. Because I will rotate the rotor 

at steady speed ω, the angular position of the rotor is as simple as: α = ω t. 
 

 
 



The above schematic shows our simple model. At the input we have rotor rotation speed ω 

that is steadily integrated to produce rotor position α. The rotor position α is then used in 
three ways. The middle branch produces the voltage uL that is feed to the winding as 

described by previously mentioned formula. 

 

The upper branch produces the back-electromotive force (BEMF) that is designated as uemf. 

The uemf is calculated as derivation of the flux through the winding multiplied by number of 

wire turns N, while flux is calculated as winding surface area ( l d ) multiplied by flux density 

B0 and factor sin(α) to account for loop angle. 
 

 
 

The uL and the uemf  are combined to drive current through the winding. Of course, the current 

also depends on winding inductance L and resistance R. We get a simple differential equation. 

 

 
 

Finally, the output torque T is calculated as a multiplication of the winding current and the 

flux density (factored by cosα to include only the component of the force that is tangential to 

rotor) and multiplied by winding physical dimensions and number of wire turns. 

 

 
 

As a basis for our further analysis, we first want to compute how the winding current i 

depends on the rotational speed ω, input voltage amplitude u0 and input voltage phase φ. I am 

a lousy mathematician so I will help myself by using Laplace transform. 

 

 
 

I was a bit sloppy here because we are not interested in transient part of the solution, but only 

in the steady state part of the solution. After some math gymnastics we have the steady state 

time-domain solution as: 

 

 



 

The obtained current is a sum of a cosine and sine part, and we can therefore conclude that it 

has a sine-wave form that, if needed, can be written as: 

 

 
 

This is a very complex solution, but some things can still be concluded. For example, when ω 
goes toward extremes the current becomes: 

 

 
 

At very high frequencies the current amplitude approaches some constant value. There is 

something fishy happening to current phase – depending on the input voltage it can move to  

+π/2 or to –π/2.  

 

In the further analysis I will be mostly interested in two things: 

1. What is the upper motor speed depending on the input voltage phase φu? More 

generally, what is the φu that gives the largest motor torque for any given voltage 

amplitude u0 and rotation speed ω? 

2. What is the voltage phase φu that maximizes motor efficiency (actually, the φu that 
develops smallest winding current for some given torque T)? 

 

Calculating the motor torque 

 

We can now substitute the obtained current into the torque equation and we get: 

 

 
 

The above equation shows the torque, as a function of time, for our DC motor model. We are 

not so much interested about how torque varies in time (although even this may be interesting 

if we consider how smooth does motor run), but we are more interested about the average 

torque motor gives at certain speed ω. To find this out, we will integrate the above torque 
formula during one rotation period and divide the value by the rotation period. 

 

 



 

Now we have something useful – a formula that tells how the developed torque depends on 

the rotation speed ω, but also on the input voltage amplitude u0 and phase φu. Let’s play a bit 
with the formula…. For very low and for very high rotation speeds it degenerates into: 

 

 
 

We see, unsurprisingly, that at very low speeds (starting torque) the torque will be at 

maximum if the supplied voltage is exactly in phase with the rotor angular position (φu=0).  
 

We want to find the rotation speed at which the torque falls to zero. In other words, we want 

to find the rotation speed at which the rotor would not accelerate any more – the unloaded 

motor top speed. Obviously, the torque falls to zero when the following is true: 

 

 
 

The obtained formula for unloaded motor top speed is very interesting because we can 

conclude that there are cases when the unloaded motor does not have limited top speed. This 

happens when. 

 
 

The above condition can only be true if φu is between 0 and π. It can never be true if: 
 

 
 

Therefore, there is some minimal input voltage amplitude that is required to achieve unlimited 

top speed of an unloaded motor. If the voltage is above this limit, then by properly adjusting 

φu, you ‘can’ achieve the unlimited speed. If the voltage is below this limit, then the unlimited 

speed cannot be achieved… This is the result I expected so I can conclude that there is no 

difference between DC and AC synchronous motors regarding this fact. 

 

In real world there is no such thing as ‘unloaded motor’. Every motor has some load, like 

bearing friction, air friction, iron looses. As a result, the upper speed limit always exists… 

very fortunate, I would say. 

 

We are also going to find the φu that maximizes the motor torque. To find such extreme, we 

must find the derivative of the torque formula by φu. 
 



 
 

What we obtained is the formula for input-voltage phase advance φu that will give the motor 

maximal torque for any input voltage amplitude. At low motor speed the optimal φu is near 

zero, at high motor speeds the optimal φu goes toward π/2. This in practice means that if we 

want to extract maximum torque (and thus also the power) at high speeds, we need to advance 

the phase of the feed voltage in respect to rotor angular position. 

 

I made a computer simulation of the described motor model. Below we can see results for a 

motor that has a 30-turn loop winding, dimensions 10x10cm. The winding resistance is 1ohm 

and winding inductance is 30mH. The stator flux density is 1T. The motor is supplied by 15V 

(as explained earlier, our special ‘commutator’ provides sine wave of the 15V amplitude to 

the motor winding). 

 

The first set of graphs, shown below, displays the case when the input voltage phase φu was 
always zero (no phase advance as the speed increases). 

 

 
 

The topmost graph shows that the motor rotation speed ω (the input into the simulation) was 

very slowly increased from zero to about 300 rad/s (2866rpm). Recall that we are forcing this 

rotation speed by some external means and we are measuring the torque provided by motor at 

any given rotation speed. 



 

The second graph shows the motor back-emf. As expected, the back-emf linearly increases as 

the motor rotation speed increases. The third graph shows some voltage ‘u’ that is 

combination of the input voltage uL and the back-emf: u=uL-uemf. This is the voltage that 

drives current through the winding. As you can see, at one moment the back-emf becomes 

equal to the input voltage and no current is driven through the winding. 

 

The fourth graph shows the motor winding current. The bottom graph shows the motor 

torque. As it can be seen, at one moment the motor torque drops to zero and then enters into 

negative region, meaning that the motor is working as a generator. [The torque graph looks a 

bit quantized because it shows the average torque value that is only calculated once per motor 

revolution.] 

 

The interesting thing to note on above graphs is that current rises to a limited value and then 

does not rise any more despite the fact that voltage ‘u’ is still rising. It is because inductance 

of the winding provides impedance to high-frequency currents. Another interesting thing is 

that at very high speeds the motor torque slowly moves toward zero (from below). 

 

The second set of graphs shows the same situation, but zoomed-in in the region where the 

torque crosses zero line. 

 

 
The interesting thing to note is how, before the event, the ‘u’ and current are in the same 

phase as the back-emf, while after the event they are in anti-phase. Another observable thing 

is that even at these relatively low speeds the current phase lags a bit after the ‘u’ due to 

winding inductance. 

 

The third sets of graph shows the same situation as in the first case, but now the input voltage 

phase is advanced by the ‘max-torque’ formula as we calculated earlier: 

 

 
 



 
 

The first two graphs are without change, as expected. The u=uL-uemf now never reaches zero 

because there is now some phase difference between uL and uemf. As a result, neither the 

current reaches zero. The torque curve is always positive (although small at high speeds) – we 

used 15V input voltage amplitude which is higher than the limit voltage needed for ‘infinite 

speed’ (10V). 

 

Computing motor efficiency 

 

The motor torque (and thus also its speed, depending on motor load) can be regulated by both, 

by changing the input voltage or by changing (advancing/retarding) the phase of the voltage 

feed to the rotor in respect to rotor position. However, if you are also interested in efficiency 

then you will not be satisfied with just any phase&amplitude pair that gives the required 

torque. There must be the phase&amplitude solution that gives the best motor efficiency. That 

solution was not obvious to me. 

 

It is easy to find that the highest efficiency (that is, the maximal torque with the lowest 

winding current amplitude) is obtained if the current is at maximum when rotor position α is 
zero. (In this position the force generated in winding wires is tangential to rotor this 

maximizes torque). This can be easily shown mathematically by integrating the torque for one 

rotation… Anyway, the required ‘efficient current’ should therefore only have it cos(ωt) 

component, while the sin(ωt) should be zero. 

 

 
 

There exist a trivial solution, φu=0, u0=ωB0k, that does not interest us because it gives zero 

current and no torque. Further, no above condition can exist for high ω if u0 is limited by any 

practical reason. 

 



What I will do is that I will extract the u0 from our torque formula and substitute it into the 

above condition. That is how I ‘teach’ our condition to respect some given torque that must be 

developed by the motor.   

 

 
 

After quite some gymnastics I obtained the formula that tells what should be the input voltage 

phase to run motor efficiently when delivering certain torque at certain speed. 

 

 
 

For very low rotation speeds, the optimal phase φu is zero. As the speed increases, the optimal 

phase increases toward some value smaller than π/2. Note that as the speed increases toward 

infinity, also the voltage amplitude u0 must be increased toward infinity to keep producing the 

desired torque. 

 

The input voltage phase advance φu needed for efficient drive is always smaller than input 

voltage phase advance φu needed to obtain maximum torque. The above examples shows the 

phase advance needed for maximum torque (black), the phase advance needed to efficiently 

develop 2Nm (green) and the phase advance needed to efficiently develop 1Nm (red). 

 

 
 

If the load torque is not constant with the speed increase (a fan or a pump, for example) then 

the best-efficiency phase advance curve might have somewhat different shape. 

 



While drawing our best-efficiency graphs our voltage amplitude was not limited, but in reality 

it will not be possible to obtain the best-efficiency working point at high rotation speeds 

because we will not be able to provide voltage above some level. From this point on, as the 

rotation speed continues to rise, you might still provide the desired torque by advancing the 

input voltage phase even further (departing from the best-efficiency curve toward the max-

torque curve) until you reach the max-torque curve. Once you advanced the phase to a max-

torque curve, and if the rotation speed continues to rise, it will not be possible to provide the 

desired torque any more. 

 

Practical considerations 

 

First, our model motor is far from a real-life motor. A real life motor is made of iron and iron 

is far from being a linear conductor of magnetic field. This might be the most important 

reason why our considerations here might only be of limited practical value. Second, we 

considered sine-wave voltage supply to the rotor winding, while in reality it would be more 

squarish or pulse-like.  

 

If we are talking about brushed DC motors, a small motor will very likely have fixed brush 

position without possibility to regulate the input voltage phase. Even if not, its load will 

probably not have a predetermined load-curve (torque as a function of rotation speed) and you 

will needed to have some feedbacks, like speed and/or current measurements, to implement 

optimal phase-advancing. 

 

The best candidate for the phase-advancement control, as it is described in this document, is a 

brushless DC motor. In this case we must have rotor position sensors anyway (or deduce the 

motor position from current measurements) and so we only need powerful-enough processor 

to adjust the phase advance.  

 

 
This document was written with the help of Math-o-mir, math notepad software. 
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